AI-Driven Biophilic Buildings for Wellbeing

SUSTAINABLE PLACES 2025

Dr Yangang Xing (Yan)
Nottingham Trent University
Yangang.xing@ntu.ac.uk

A brief overview of few related projects

Biophilic designs of educational buildings: Inspiration; Personality differences and traits; EEG;

Human Nature Interaction Behaviour Onions

Forest Bathing in Hospices

Innovate UK project 1: Digital Biophilic Display AI Curation and Generative Arts

Innovate UK project 2: Smart Building for Ageing Care

Heritage buildings and mental health nexus

Biophlic classrooms improve learning

Evidence base

Stress reduction → lower cortisol, decreased skin conductance, reduced blood pressure,

Attention restoration → improved focus, reduced fatigue

Mood & creativity → higher job satisfaction, lower absenteeism

Inspiration → Increased motivation, creativity, and productivity

PLOS ONE

RESEARCH ARTICLE

Exploring biophilic building designs to promote wellbeing and stimulate inspiration

Yangang Xingo1*, Nikki Stevensono2, Carolyn Thomas1, Alex Hardy2, Andrew Knight1, Nadja Heymo2, Alex Sumicho2

- 1 School of Architecture, Design and Built Environment, Nottingham Trent University, Nottingham, England,
- 2 School of Social Science, Psychology, Nottingham Trent University, Nottingham, England

GOPEN ACCESS

Citation: Xing Y, Stevenson N, Thomas C, Heym N, Hardy A, Knight A, et al. (2025) Exploring biophilic building designs to promote wellbeing and stimulate inspiration. PLoS ONE 20(3): e0317372. https://doi.org/10.1371/ journal.pone.0317372

Editor: Boshra A. Arnout, King Khalid University, EGYPT

Received: June 19, 2024

Accepted: December 26, 2024

Published: March 4, 2025

1. Introduction

Abstract

Biophilic designs aim to promote health and wellbeing by incorporating nature-based features into internal and external built environments. Three theories have previously been proposed (i.e., Recovery, Attention Restoration, Refuge, and Prospect) regarding the impact of biophilic features on psychological and physiological health, but with little empirical evaluation. This current study tests these three existing theories, alongside a novel biophilic theory proposed in this paper, as that biophilic environments stimulate inspiration. A public survey was conducted, and participants completed an online stress-induction task followed by images of building interiors that systematically varied in perceived biophilic quality—ranging across four levels (from 0 = no clear biophilic features to 3 = very high biophilic features). Participants rated their psychological states associated with each of the proposed theories before and after each trial's stress-induction and biophilic phases. Results support a positive effect of exposure to biophilic design on self-reported psychological states (including inspiration), whilst designs without biophilic quality tended to have an adverse effect on psychological states. Furthermore, findings support the extension of the current three theories to include the impact of biophilic designs on stimulating inspiration.

^{*} Yangang.xing@ntu.ac.uk

Exploring Biophilic Building Designs to Promote Well-being and Stimulate Inspiration

• Xing, et al, 2025, Exploring biophilic building designs to promote wellbeing and stimulate inspiration, PloS one 20 (3), e0317372

Table 1. Demographics information of the participants

haracteristic	N=255 Sample exposed to the biophilic spaces 18-77 Years			
ge Range				
iological Sex	Female	67%		
	Male	22%		
	Withheld	1%		
thnicity	White	82%		
	Black/African American	5%		
	Asian	8%		
	Other/ declined	4%		
Environment Growing Up	Much More Nature	18%		
	A Little More Nature	20%		
	Equal Nature and Urban	18%		
	A little More Urban	18%		
	Much More Urban	17%		
Living Environment in Termtime	Much More Nature	13%		
	A Little More Nature	21%		
	Equal Nature and Urban	18%		
	A little More Urban	22%		
	Much More Urban	17%		
ving Environment in Termtime	A Little More Nature Equal Nature and Urban A little More Urban	21% 18% 22%		

Biophilia Theory	PANAS Items
Stress Recovery	Relaxed, Irritable
Attention	Attentive, Fatigued
Restoration	
Refuge and	Self-assured,
prospect	Frightened
Inspiration	Inspired,
	Downhearted

Paper 1: Inspiration (Xing, et al, 2025)

Fig 2.a No biophilia: Level 0

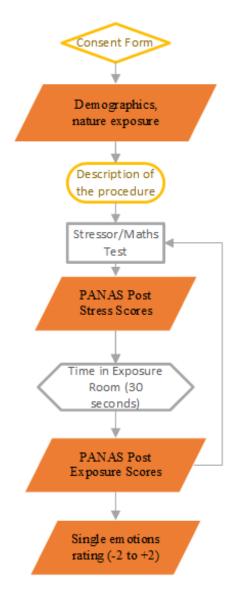
Level 0 (No/minimal biophilic features) spaces designed according to common existing features in public spaces. No privacy (refuge), lack of views onto nature, artificial lighting. Bland colour schemes for furniture and furnishings. Lack of all biophilic elements.

Fig 2.b Nature of the Space: Level 1

Spaces were designed according to elements in Nature of the Space category. Prospect and refuge: furniture arranged to create secluded spaces and transparent walls for mystery. Open double height staircase for risk and peril and neutral colour schemes. The space is designed without biophilic applications from level 3 and 4 (natural analogues and nature in the space).

Fig 2.c Natural Analogues: level 2

Includes all elements from level 1, with the addition of artwork inspired by nature reflecting the diverse variety of forms found in nature; biomorphic forms and organic patterns, depicting the seasons, reflections on water and flowers. Neutral and green colour schemes were chosen for furniture. Lighting fixtures with organic patterns.


Fig 2.d Nature in the Space - direct contact with nature: Level 3

Includes all elements from level 1 and 2, with the addition of views into nature (trees, plants, grass, sky). Natural lighting with reflections of trees onto glass walls and partitions. Potted plants and green walls.

PLOS ONE

DECEMBOU ADTICI

Exploring biophilic building designs to promote wellbeing and stimulate inspiration

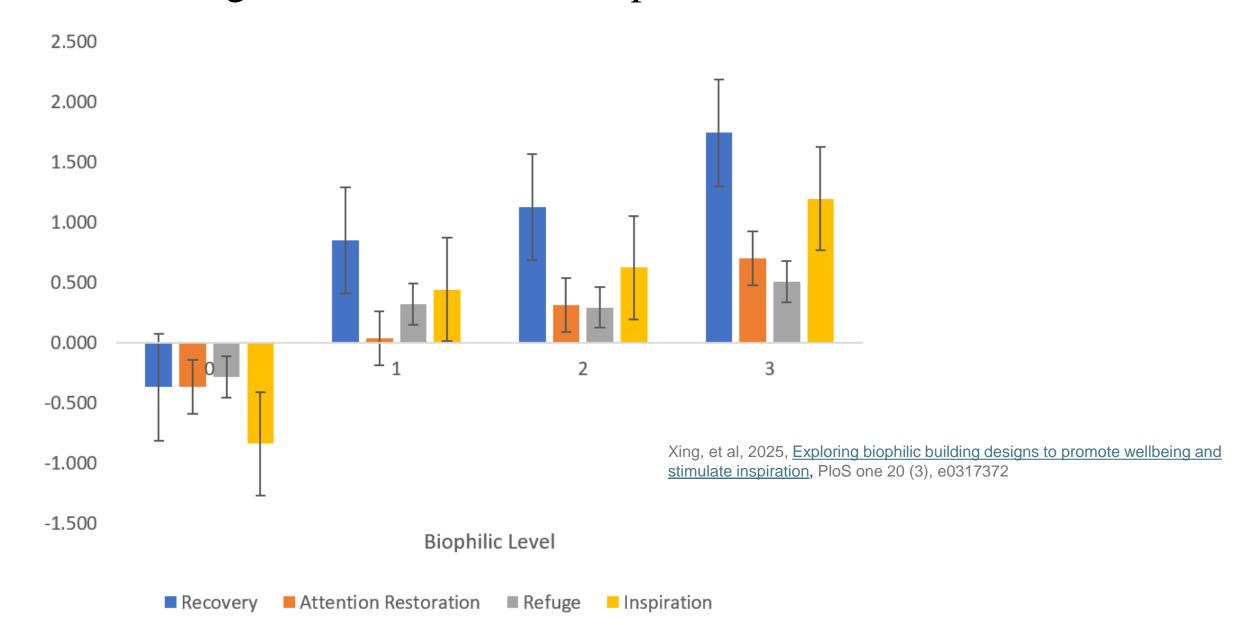
Yangang Xing@1*, Nikki Stevenson@2, Carolyn Thomas1, Alex Hardy2, Andrew Knight1, Nadja Heym@2, Alex Sumich@2

- School of Architecture, Design and Built Environment, Nottingham Trent University, Nottingham, England,
 School of Social Science, Psychology, Nottingham Trent University, Nottingham, England
- * Vangang ving@ptu ac ul

Check for updates

€ OPEN ACCESS

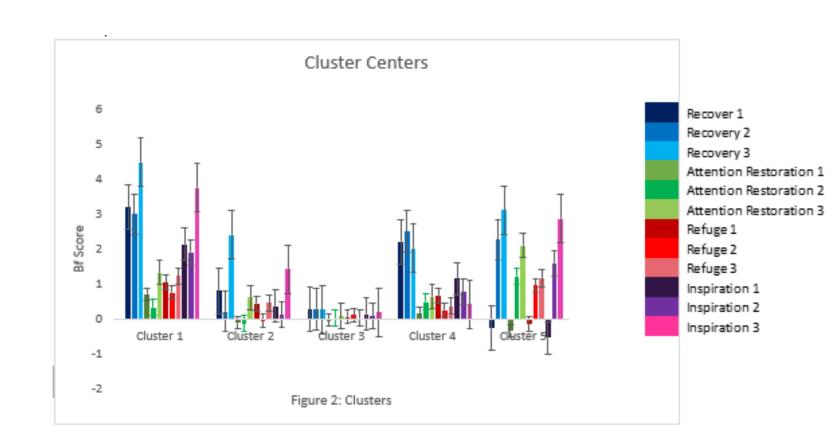
Citation: Xing Y, Stevenson N, Thomas C, Heym N, Hardy A, Knight A, et al. (2025)

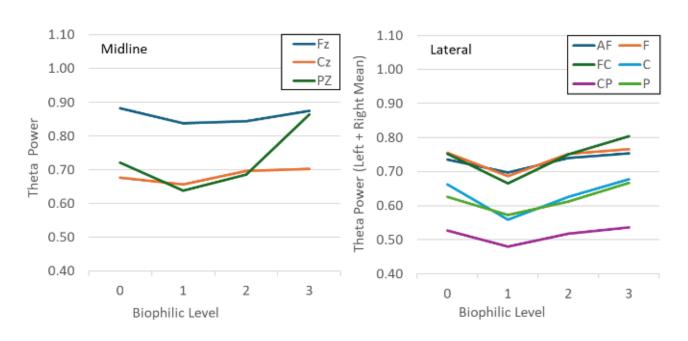

Abstract

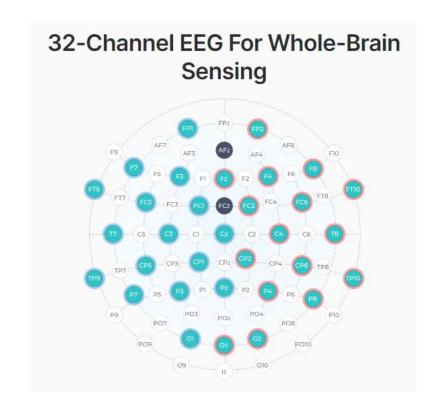
Biophilic designs aim to promote health and wellbeing by incorporating nature-based features into internal and external built environments. Three theories have previously been proposed (i.e., Recovery, Attention Restoration, Refuge, and Prospect) regarding the impact of biophilic features on psychological and physiological health, but with little empirical evaluation. This current study tests these three existing theories, alongside a novel biophilic theory proposed in this paper, as that biophilic environments stimulate inspiration. A public survey was conducted, and participants completed an online stress-induction task followed by images of building interiors that systematically varied in perceived biophilic quality—ranging across four levels (from 0 = no clear biophilic features to 3 = very high biophilic features). Participants rated their psychological states associated with each of

Xing, et al, 2025, Exploring biophilic building designs to promote wellbeing and stimulate inspiration, PloS one 20 (3), e0317372

Paper 1: Inspiration


Estimated Marginal means Across Biophilic levels


Paper 2: Personality


Exploring the potential of Biophilic Building Designs to Promote Well-being in Neurodivergent Groups

- Autism-Spectrum Quotient (AQ-10; Allison, Auyeung & Baron-Cohen, 2012)
- The Strengths and Weaknesses of ADHD Symptoms and Normal Behaviour (SWAN) scale (Swanson et al., 2012)
- The Depression Anxiety Stress Scales (DASS 21; Lovibond & Lovibond, 1995)
- The Nature Relatedness (NR; 21 items) scale (Nisbet, Zelenski, & Murphy, 2009)
- Negative Affect Scale (PANAS) (Watson & Clark, 1994)

Paper 3: EEG Analysis

Means for subjective response (left panel, error bars show standard error of means) and **theta power** (uV^2/Hz , right panels) as a function of 0-3 biophilic features. Lateral theta power was recorded over anterior frontal (AF), frontal (F), frontocentral (FC), central (C), centroparietal (CP) and parietal (P) regions.

In line with previous work (Chen et al., 2020; Rounds et al., 2020; Jung et al., 2023), increasing biophilic features were associated with increases in posterior and lateral theta power

FLEX 2.0

Beneficial effects on subjective mood and brain function of biophilic quality in university environments shown in virtual reality (15th ICDVRAT, Prague, Sumich, Thomas, Knight, Xing 2024)

Article

Developing An AI-based Digital Biophilic Art Curation to Enhance Mental Health in Intelligent Buildings

Yangang Xing ^{1,†}*®, Purna Kar ^{1,†}®, Jordan J. Bird ^{1,†}®, Alexander Sumich ^{1,†}®, Andrew Knight ^{1,†}®, Ahmad Lotfi ^{1,†}® and Benedict Carpenter van Barthold ^{2,†}®

- Nottingham Trent University, 50 Shakespeare St, Nottingham NG1 4FQ, United Kingdom
- Vieunite Limited, 38 Kettles Wood Drive, Birmingham, United Kingdom, B32 3DB, United Kingdom
- * Correspondence: yangang.xing@ntu.ac.uk
- † These authors contributed equally to this work.

Emotional Label	p-Value (Recommendation System)	p-Value (Random Recommendation)
Relaxed, Calm	0.039 *	0.796
Proud, Grand	0.673	0.902
Nourished, Fulfilled	0.532	0.648
Attentive, Concentrating	0.201	0.405
Sad, Downhearted	0.007 *	0.268
Afraid, Frightened	0.108	1.0
Upset, Distressed	0.346	0.47
Inspired, Amazed	0.0002 *	0.013 *
Energised, Excited	0.053	0.318
Happy, Cheerful	0.022 *	0.694
Determined, Confident	0.252	0.272
Safe, Cosy	0.957	0.368
Ashamed, Guilty	0.601	0.748
Shy, Bashful	0.011 *	0.371
Hostile, Angry	0.114	0.414

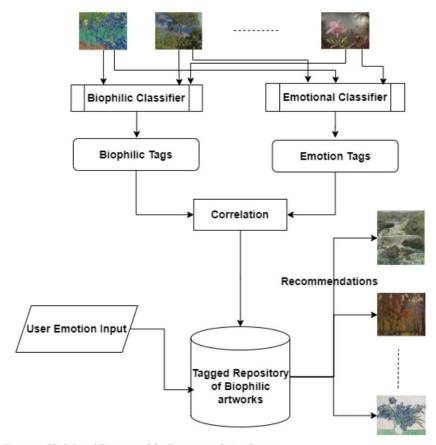


Figure 3. High Level Diagram of the Recommendation System.

Predicting Emotions Evoked by Artworks: A Study on Multi-Modal Approaches

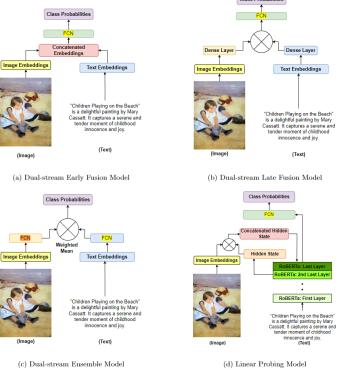
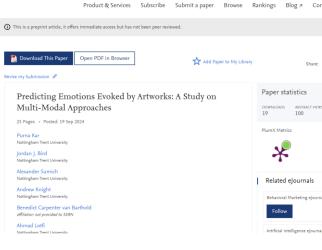


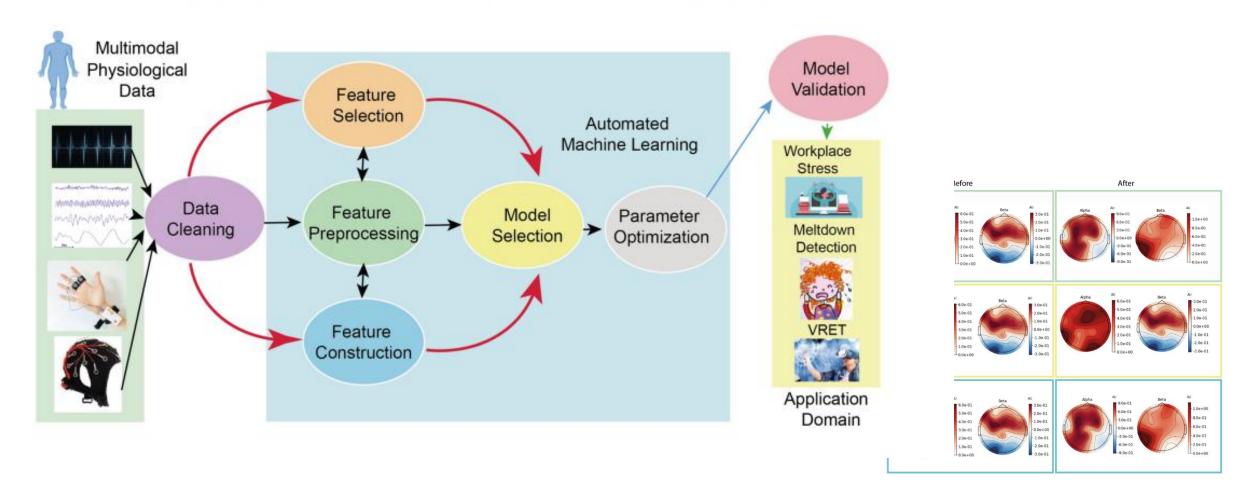
Fig. 4: High-Level Diagrams of Multi-Modal Models



SSRN

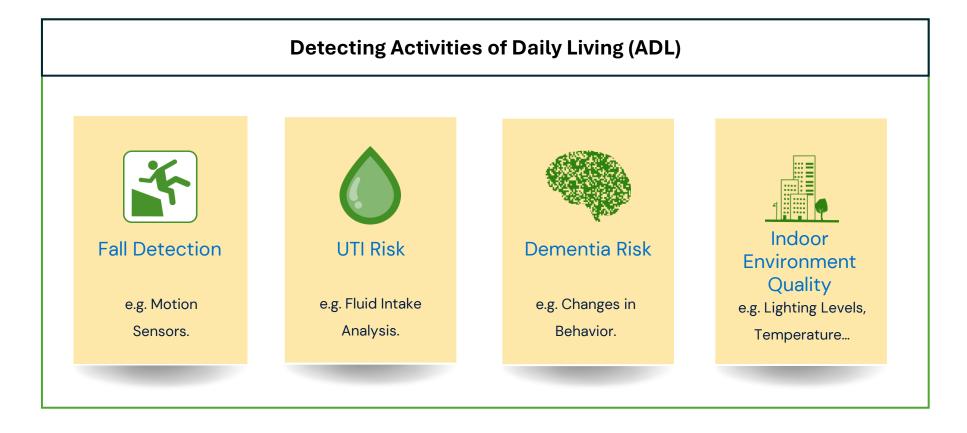
(a) Predicted Label: Happiness (Image Explanation)

(c) Predicted Label: Sadness (Image Explanation)



Children Playing on the Beach is a delightful painting by Mary Cass att it captures a se rene and tender moment of childhood in nocence and joy

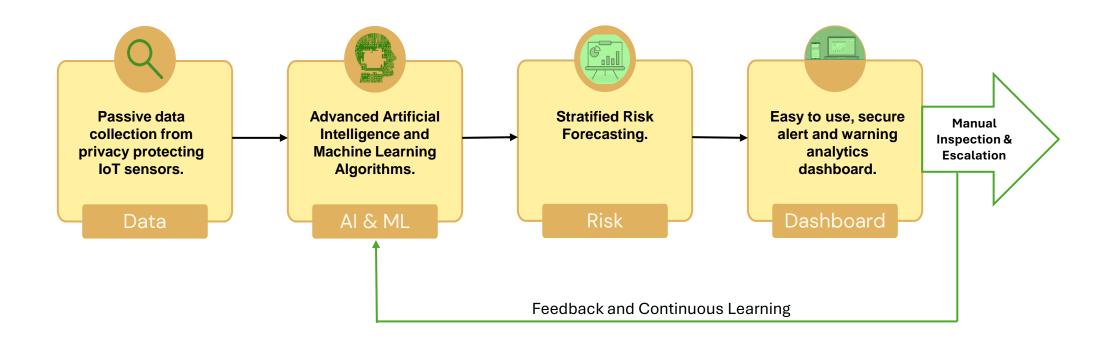
(b) Predicted Label: Happiness (Text Explanation)


J il ted is a poignant painting by Brit on Riv iere, completed in 18 87 It portrays a heartwrench ing scene of rejection and emotional pain In this painting, we see a man sitting on a chair, his posture reflecting de jection and des pond ency His gaze is down cast, his shoulders slumped, and his facial expression wrought with despair, possibly holding a letter of reject ion in his hand Despite his sorrow, a loyal companion, his dog, stands beside him, offering silent comfort and solace in this moment of distress

(d) Predicted Label: Sadness (Text Explanation)

Industrial collaboration:

Smart Care homes redefined: Al-Driven People-Centric Care



Virtual Wards and Assisted Living

ADL Identification: Power Monitoring

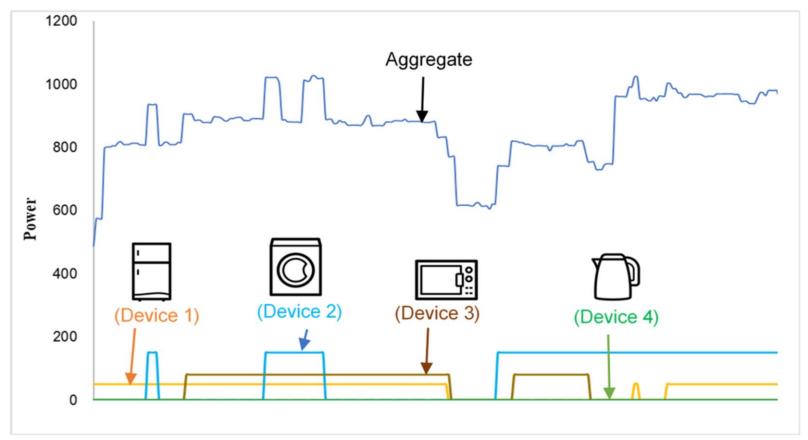
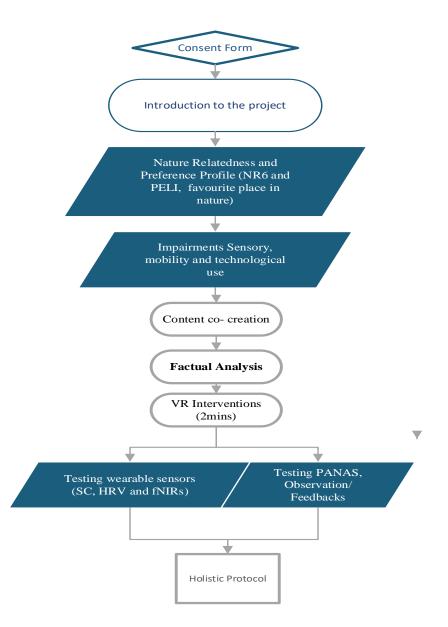
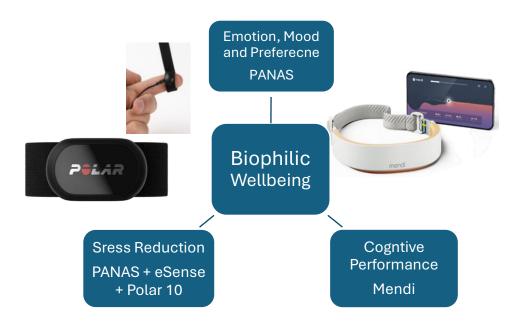


Figure 7: Power Monitoring profile for residential building Sensors 2022, 22(11), 4036; https://doi.org/10.3390/s22114036

Biophilic Palliative Care





Complexity and Order - Natural Analogues Nature Preference Profile

- Scene taken with 360 camera

Pilot Study – Biophilic Therapy Monitoring

Thomas, Xing, 2024, Existential Biophilic VR Therapy – Developing a Protocol for Care, The 15th International Conference on Disability, Virtual Reality, Prague

Initial results: Health and Wellbeing

RMSSD	Level 1	Level 2
Baseline		
138.92	165.95	96.98
28.70	12.5	93.25

SDNN Baseline	Level 1	Level 2
90.68	126.55	92.31
19.31	14.13	77.83

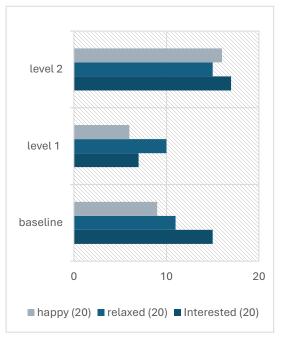
eSense - Skin Co

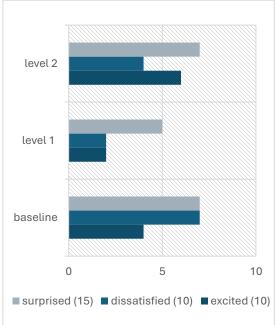
0-5 = relaxed state

6-9= animated state

10+= stressed

Polar 10 - Heart Rate Sensor


RMSSD - healthy range 19ms to 107


SDNN – healthy range + 100

50 to 100ms - compromised health

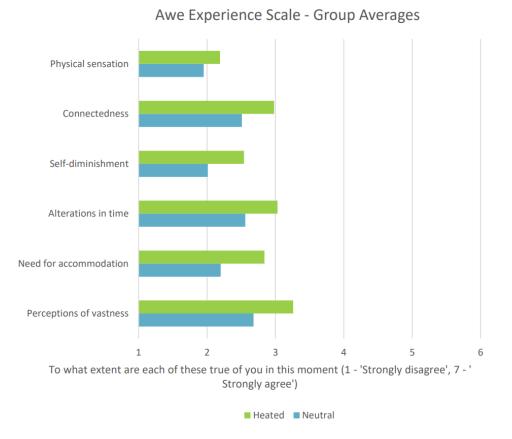
Below 50 – unhealthy

	Countryside scene	Ed	Woodland scene	<u>Fd</u>	Coastal Scenes	<u>Fd</u>
High Fd		1.70		1.71		1.75
Medium Fd		1.47		1.47		1.47

Forest Bathing in Hospices- Ongoing PhD research

Quality of Life	Unguided		Guided		
Indicators					
	Pre	Post	Pre	Post	
Warwick Edinburgh	36.67	46.67 (7.57)	45.25 (6.96)	51.5 (10.25)	
mental Wellbeing Scale	(8.19)				
Inclusion of Self in Nature	4.22 (1.20)	5.11 (0.78)	4.75 (1.04)	5.88 (0.64)	
Scale					
SNDD (HRV)	24.00 (18.	28.48 (23.31)	40.23 (16.39	45.96 (18.23)	
	18))		

Biophilic Multi-Sensory Accessibility



Treetops
Hospice

Shinrin-yoku

Intelligent Heritage Buildings

- Multiple sensory biophilic features and mental health
- No Harm Zero Carbon, thermal comfort and pipe organs
- Unlocking cultural heritage for inclusive urban regeneration

FIGURE 2: Fabrics in the interior.

Human Nature Interaction Onions (Xing, et al 2023)

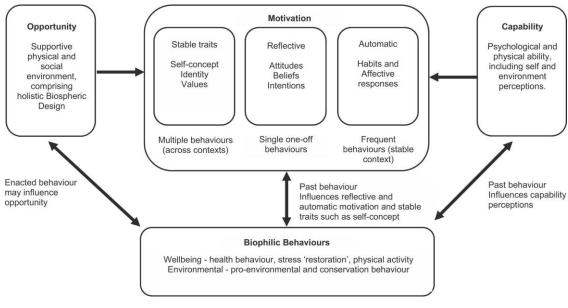
Contents lists available at ScienceDirect

Urban Forestry & Urban Greening

journal homepage: www.elsevier.com/locate/ufug

Developing a biophilic behavioural change design framework - A scoping study

a School of Architecture, Design and Built Environment, Nottingham Trent University, UK


b Department of Psychology, Nottingham Trent University, UK

ARTICLE INFO

Keywords: Biophilic Behaviour Nature based solutions Urban built environment Behaviour change techniques

ABSTRACT

This study argues that as a key measure of success in biophilic design, biophilic behaviours, should be defined, understood, supported, and encouraged within the design process. The study reviewed social science and built environment literature to define and evaluate behaviours and behavioural determinants relevant to biophilic design. An outline methodology proposes the alignment of behaviour change techniques to biophilic design stages. This incorporates the conditions of behavioural opportunity, motivation, and capacity. We conclude by calling for multidisciplinary cooperation and the alignment of behavioural objectives across the built environment and social science fields.

Networks

- Charing Intelligent Buildings group
- Organizing international webinars
- Developing International collaborations

Thank you!

Please inform us of any case studies or research proposal you would like to collaborate

yangang.xing@ntu.ac.uk